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We present a method for the construction of a simple class of physically accept-
able planar discrete velocity models (DVMs) for binary gas mixtures. We want
five conservation laws (no more, no less) with binary collisions. We first con-
sider a collision with a particle at rest and different possibilities for the three
other particles. We associate other particles and find semisymmetric qvi models
with q=7, 9, 11, 13 and 15, symmetric with respect to the two coordinate axes,
but not to an exchange between the two axes. In order to avoid ``spurious'' mass
conservation relations for the species without particle at rest, we find, for the
two coordinate axes, that the tips of the momenta of the particles must be on two
intervals parallel to one axis with opposite values on the other. There remain some
physically acceptable q=9 (the smallest) and 11, 13, 15 models (adding multiple
collisions for some others). Second, we construct the associated symmetric
models qvi _ q̂vi , which are superpositions of the qvi model and another q̂v i ,
rotated by ?�2. The possible previous defect of the spurious mass invariant for
qvi is transmitted to the symmetric one. We explain another defect coming from
qvi and q̂vi having only one common particle, then ``spurious'' invariants exist for
the momentum conservations along the two axes. We get four physically accept-
able symmetric 17vi (and three intermediate semisymmetric 13vi models) and
one 25vi model superposition of two 11vi and two 15vi models (other acceptable
symmetric 11vi , 13vi , and 25vi models exist with multiple collisions).

KEY WORDS: Discrete velocity models; mixtures, collision invariants.

1. INTRODUCTION

Recently Bobylev and Cercignani(1) introduced the idea that Discrete
Velocity Models (DVMs) for gas mixtures in a wide context are objects of
mathematical and physical interest. They proposed a general method to
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construct planar binary mixture models with masses equal to 1, M for the
light and heavy species. As illustration, with binary collisions, they
described two specific simple models, symmetric with respect to an
exchange between the two axes: 13vi , M=2, 5 and 25vi , M=2, 5.

One of us (H.C.), for the two first symmetric 13vi , M=2, 5 models,
found two spurious invariants which will be discussed in the present paper
(a way to eliminate these spurious invariants is to introduce multiple colli-
sions). He found also, with only binary collisions, two semisymmetric 11vi ,
M>1, 13vi , M=5 and one symmetric 17vi , M=2 models. At that time
they were the first known models without spurious invariants.

In two meetings, (2) the authors of ref. 1 mentioned both this defect for
their 13vi symmetric models and that other people have also found
spurious invariants for their two symmetric 25vi , M=2, 5 models.

Cercignani and Cornille(3) have presented the three above models with
11vi , 13vi , 17vi velocities and studied the properties (shock waves) for the
two first ones. These planar models have 5 physical conservation laws as
expected for a binary mixture in the plane case. For the construction they
first considered a collision with a heavy rest particle and one of the three
other particles with momenta (x, y) being along one coordinate axis. They
associated other collisions with momenta (\x, \y) and they obtained a
11vi model with M arbitrary, not symmetric with respect to the exchange
of the x and y coordinates. They deduced another semisymmetric 13vi ,
M=5 and the symmetric 17vi , M=2 model with ( y, x) momenta
associated to (x, y). Finally to these models they added another class of
11vi , 13vi , 17vi models with a particle at rest of the light species. To their

semisymmetric 11vi models they associated the rotated by ?�2, 11@v i models

satisfying 11vi & 11@vi=5vi and, from 11vi _ 11@vi=[11+11&5] vi , they got
two symmetric 17vi models.

Recently Bobylev and Cercignani(4) discussed a method of construct-
ing models without spurious invariants. They mentioned that the minimal
semisymmetric models were our previous 11vi models(3) and that their
study confirms that their symmetric 25vi , M=2, 5 models(1) have spurious
invariants.

In the present paper, we extend the method of ref. 3 for the construc-
tion of models without spurious invariants and, for instance, find two
results different from those of ref. 4. We find that the smallest semisym-
metric model is 9vi (not 11vi ) and for the 25vi models, that the M=2
model, with binary collisions, has no spurious invariants (for M=5 we add
multiple collisions).

We have two motivations for the present work. On the one hand we
generalize the method of ref. 3, following the same steps, with different

968 Cornille and Cercignani



possibilities depending on the momenta of the particles in the original colli-
sion with a particle at rest. On the other hand a difficulty for the construc-
tion of such models is the possibility to have ``spurious invariants'' that we
call ``virus,'' for instance two mass conservations for one species or two
momentum conservations along one axis. We want to understand how such
virus can appear and if a possible medicine to eliminate it exists. However
for the species including the particle at rest, it is easy to prove that such
a virus for the mass conservation cannot exist.

In the first step we construct the collision with exchange of energy
including one rest particle (either heavy or light). For the three momenta
associated to the three other particles we have different possibilities: either
two of them are along the coordinate axes, or only one or finally zero.
Then, to the (x, y) momentum components of the previous three particles
we associate other particles with momenta ('1 x, '2y), '2

i =1. In this way
we obtain three classes of qvi semisymmetric models with respectively q=9,
11 and 13 particles, presented in Figs. 1, 2a, b, and 3. The study is done in
Section 2.

These semisymmetric models are symmetric with respect to the x, y-
axes but not to an exchange of the y and x axes. For the physically accept-
able models (without virus with only binary collisions) we find that the tips
of the momenta are both along two intervals parallel to the x axis with
opposite values for the y-component, y=\& (with & integer only for the
11vi model with M=2 or 5 and along two intervals parallel to the y axis
with opposite values of the x-component, x=\1. If this geometrical struc-
ture is not satisfied we find a virus coming from a possible ``spurious rela-
tion'' for the mass conservation of the species without a particle at rest. We
give an example, cf. Fig. 2c, not satisfying completely the above geometrical
structure, with an arbitrary parameter. There are tips of the momenta parallel
on two x-axis intervals but not on the y-axis and consequently we find, for
the species without particle at rest, two mass conservations (a medicine for
particular values of the arbitrary parameter being possible with multiple
collisions). They reduce to only one for the particular value of the arbitrary
parameter recovering the geometrical property for the y-axis and the model
of Fig. 2a. However even in this case we notice a particular case without
spurious conservation laws (only 5 conservation equations) but with an
ambiguous conservation relation for the mass of the species without the
particle at rest. Later we present the three acceptable classes giving the 9vi ,
11vi , 13vi models.

In the second step, for all previous qvi models we can, with a rotation
of ?�2, associate other ones q̂vi , the intervals parallel to the axes with
y=\& or x=\1 becoming y=\1 or x=\&. In Section 3 we obtain
symmetric qvi _ q̂vi models with 17vi , 21vi , 25vi particles. However a great
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difference occurs depending on whether & is not an integer (starting with
9vi models, part of the 11vi models and 13vi models) or is integer, &=1, 2
for the M=5, 2, 11vi models. For the models with "{1, {2, only the par-
ticle at rest is common to the two starting models. Then the momentum
relation along one axis is the sum of the momentum relations for the two
building-up models and a virus leading to a ``spurious momentum
invariant'' exists. This virus can be detected in the original qvi model,
depending on whether it has momenta along the bisectors of the two axes
or not. On the contrary for the 11vi models with &=1, 2, leading to 17vi

models, five particles are common and only one momentum conservation
exists for each axis. In this way (Figs. 4) we find four acceptable models:
two with M=2 (light or heavy (ref. 3) particle at rest) and two other ones
with M=5, 3 (heavy or light particle at rest).

In Section 4, starting with a collision term with exchange of energy
along the x-axis, we obtain (Fig. 5) both 7vi and symmetric planar
7vi _ 7� vi=13vi models (cf. ref. 1 for M=2, 5). With binary collisions both
models have spurious mass conservations (disappearing with multiple
collisions).

An extension of the present method is to start with more than one
collision term with exchange of energy, for instance the 25vi model of ref. 1.
In Section 5 and Figs. 6�7, starting with two collision terms, (giving three

collisions), we get qvi=15vi and 25vi=15vi _ 15@vi models for M�2. We

have not (15vi & 15@v i=5v i ) the virus leading to spurious momentum rela-
tion. What about the virus associated to the tips of the momenta not
parallel to the y-axis?. For M{2 (contrary to M=2) we have particular
tips of momenta not on two intervals parallel to the y-axis, and we recover
the same virus as for some previous examples of the 11vi , 13vi models. We
find for both the 15vi and the 25vi models, spurious mass invariants for the
species without particle at rest (a medicine being multiple collisions).

We write our proofs in different lemmas and write As Illustration when
these lemmas can be verified with explicit collision terms. For these gas
mixtures we call fi ( p� i ), li the densities (momenta) and left hand side of the
evolution equations for the light particles with mass equal to 1 and F i (P9 i ),
Li for the heavy particles with mass equal to M. In order to check physical
models (or not) we present a pedestrian, but efficient, method. For instance
for the mass of the species without F0 we consider only the collisions
including f i . Starting with one such collision we write the most general
linear combination of li not containing it, then do the same with a second,
third . . . collision and get � ai l i=0. In this sum either all the constants ai

are equal and all li are present or not. In the second case we have spurious
mass invariants. We look at the missing collisions (with a geometrical
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explanation) and eliminate the useless collisions. In this way, in Section 6,
for the 25vi , M=2 and M{2 models (46 and 44 collisions), only 11 and
10 collisions are sufficient to detect the virus of the spurious invariant.

For any set Xi , xi we define Xi, j,..., p=�s= p
s=i Xs , xi, j,..., p=�s= p

s=i xi .

2. SEMISYMMETRIC qvi=9vi , 11vi , 13vi PLANAR MODELS

We present in Figs. 1, 2a, b, and 3 the 9vi , 11vi , 13vi models, deduced
from the starting collisions f0Fi& fjFk or F0 fi&Fj fk with an exchange of
energy between the two species and two, one or zero particles along the
coordinate axes.

Lemma 1. No spurious mass invariant (for the qvi and symmetric
qvi _ q̂vi models) for the species associated to the particle at rest f0 (or F0).

The important point is that all other particles of this species are linked
to the particle at rest by a collision with exchange of energy between the
two species: 1 exch

i =Fk f0&Fm fi (or 1 exch
i =F0 fk&Fi fm). Let us start with

the light-species densities f0 , fi and li , l0 . For the density of the particle at
rest f0 we have l0=&�i 1 exch

i . In order to have a linear relation between
the li we must successively add l1 , l2 ,... with all li and with only these colli-
sion terms with energy exchange we have l0+�i{0 li=0. Let us recall that

Fig. 1. 9vi model with F0 heavy rest-particle and M�2.
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the light or heavy mass conservation is satisfied for any collision. Conse-
quently the other collisions including li but not f0 , l0 : collisions of the type
fk fl& fi fm or Fk fl&Fm fi give zero in the �i{0 li (they give opposite con-
tributions in the loss and gain terms). The same proof holds for F0 , Fj{0.

We always have the total mass conservation for the sum of the two
species and we deduce, from Lemma 1, that either f0 , � Li=0 or F0 ,
� li=0. However it could happen that there are two subsets in this species,
satisfying separately a mass conservation relation, for instance if we detect
two particles of the species, without rest particle, which cannot be connected
with binary collisions. Such a virus of spurious mass invariant does not exist
for the models in Figs. 1, 2a, b, and 3. We present in Subsection 2.1,
Fig. 2c, another 11vi model explaining how this virus can appear and the
way to eliminate it, Fig. 2a.

Fig. 2. (a) 11vi model with f0 light rest-particle and M=2. (b) 11vi model with F0 heavy
rest-particle and M�2. (c) 11vi model with f0 light rest-particle, M=2 and a spurious heavy
mass conservation. (d) 11vi model with f0 light rest-particle, M=3 and ambiguous heavy
mass conservation.
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2.1. 11vi with Possible Spurious Mass Invariants (Figs. 2)

(i) We start with three classes of collisions with energy exchange:

f0 F3& f1F1 , P9 3(1++, &)= p� 1(1, &)+P9 1(+, 0), (M&1) &2=1+2+&M,

+=1 � &2=(3&M )�(M&1), 1<M<3 � +=1, M=2, &=1 (2.1)

F0 f3&F1 f2 : p� 3(1, &)= p� 2(&+, 0)+P9 1(1++, &), &2(M&1)=(1++)2

+M(+2&1), +=1 � &2=4�(M&1) � M=5,

&=1 and M=2, &=2 (2.2)

f0 F3&F1 f1 : P9 3(2, &)= p� 1(1, 0)+P9 1(1, &), M=3, & arbitrary (2.3)

To the momenta (x, y) we associate 7 momenta ('1x, '2 y), '2
i =1, We

obtain 11vi models associated to (2.1), +=1 (Fig. 2a), +{1 (Fig. 2c), to
(2.2), +=1 (Fig. 2b), and to (2.3) (Fig. 2d). We find 10 collision terms and
6 linear relations in Fig. 2c and 12 collisions with five linear relations in the
other case. However, without a detailed knowledge of these collisions, three
invariants (which give physical invariants by linear combinations), can be
deduced from the geometry of these models. For the 11vi , 9vi , Figs. 1�2 all
momenta are parallel or along the x-axis with y components &, 0, &&. Let
us call X& , X0 , X&& , the associated sum of the left-hand sides of the evolu-
tion equations (for instance X&=L3, 4+l1, 2 , X0=l0+L1, 2 , X&&=L5, 6+
l3, 4 in Figs. 2a�c).

Lemma 2. We prove that X&=X&&=X0=0.

First � Li=� li=0 giving X&, &&+X0=0 from Lemma 1 and
X&=X&& (momentum conservation along the y-axis). Second, for the (2.1)
models, we can write the energy relation as (1+&2) X&, &&=&+2 � Li �M
=0, for the (2.2) (Fig. 2b) model as (1+&2&+2) �&, &&=&+2 � l i=0 and
for the model (2.3) as X&, &&=� Li=0. We deduce X\&=X0=0.

In general these invariants X& , X&& , X0 have no physical meaning,
however by linear combinations we have seen that we recover 4 physical
invariants: momentum along the y-axis, mass conservations and energy. It
remains only to check the momentum along x and to verify that the mass
conservation for the species without particle at rest has no spurious
invariant.

In Fig. 2d X0=0 is the mass conservation � l i=0 whereas X&=
L1, 2, 3, 4=0 and X&&=L5, 6, 6, 7=0 are the sums over two subsets of
� Li=0. Although there are only five linear relations in this model, we do
not retain two mass relations for the same species. We call ``ambiguous ''
such a model.
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Lemma 3. For the +{1 models, defined in (2.1), f0 (Fig. 2c) and
(2.2), F0 we have not the tips of momenta parallel to the y-axis with
opposite values (x=\1), no collisions with sums of momenta along the
y-axis and there exists a spurious mass relation for the species without f0

(or F0).

We have 6 Fi (or fi ) and 4 collisions with exchange of energy with
pairs of F i ( f i ) leading to two triplets Li, j, k=0 (l i, j, k=0). In each triplet
we have two particles with the same x values and opposite y=\& values
and for the four collisions with sums of momenta along the x-axis they are
in loss and gain terms, still giving the same Li, j, k=0 (li, j, k=0). For the
collisions with opposite momenta, for each triplet we still have vanishing
contributions coming from the loss and gain terms. Finally we have two
Li, j, k=0 (li, j, k=0) and one spurious mass invariant for the species
without particle at rest. Here (contrary to the 13vi , see later), the collisions
with sums of momenta along the x-axis are useless while such collisions
along the y-axis are missing.

As Illustration we write the 10 collisions with i=1, 2 only for Fig. 2c,
+{1:

1i =c( f0 Fi+2& f iF i ), 12+i=c( f0F4+i& f2+iF i )

14+i=c� (F3+i f3+i&F4+i fi )
(2.4)

16+i =c~ (F2+i f5&i&F4+i f3&i ), 0=b(F3F6&F4 F5)

4=a( f1 f4& f2 f3)

We see that the two subsets (F1 , F3 , F5), (F2 , F4 , F6) are, in all collisions
where they are present, both in the loss or the gain terms, and we verify
Lemma 3: L1, 3, 5=0=L2, 4, 6 . Similary for +{1, (2.2), we verify l1, 3, 6=
l2, 4, 5=0 from 10 collision terms. We verify �4

0 l i=0 in (2.4) or Lemma 1
and X\&=X0=0 or Lemma 2 and recover four physical conservation rela-
tions. It remains the momentum along the x-axis: +(L1, 3, 5&L2, 4, 6)+[L3, 5

&L4, 6+l1, 3&l2, 4] where both terms vanish in (2.4). In order to eliminate
the virus leading to a spurious mass invariant we must have collision terms
which do not annihilate each other in the sum over the first and second
subsets. We have two medicines:

Lemma 3bis. The Lemma 3 spurious invariant disappears either
with only binary collisions for +=1, Figs. 2a, b and the tips of the
momenta parallel to the y-axis or with multiple collisions for +{1,
+ integer. In both cases we have collisions with sums of momenta along the
y-axis and one particle of both triplets in loss and gain terms.
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As Illustration. (i) We begin with +=1 in (2.1) (Fig. 2a), &=1, {1
for M=2, {2 and add to (2.4) two new binary collisions mixing F1 , F2 :

19=ĉ( f1 F2& f2 F1), 110=ĉ( f3F2& f4F1), � 19, 10=L1, 3, 5=&L2, 4, 6

(2.4$)

We have p� 1+P9 2= p� 2+P9 1=(0, &) and momenta parallel to the y-axis with
x=\1. Similarly for +=1 in (2.2) Fig. 2b we have new collisions
f2 F1& f1F2 , f4F1& f3F2 mixing the two (li ) subsets. The other conserva-
tions hold so that there are no spurious invariants for the 11vi models with
binary collisions and tips of the momenta parallel to both axes (opposite
values)

(ii) We go on with multiple collisions (sums of momenta along the
y-axis) when +{1 is an integer in (2.1) Fig. 2c: f +

i F2& f +
i+1F1 , i=1, 3

(similarly in (2.2), + integer), the spurious mass invariant disappears and
we have 5 physical invariants. Finally we notice that in (2.1) with
1<M<1+2+ we have physical models with & not rational except for
+=1, &=1, 2, M=2, 5.

2.2. Only Five Conservation Relations for the 9vi Model
(Fig. 1)

We start with a collision term with energy exchange: F0 f3&F1 f2 :

P9 0+ p� 3(0, &)= p� 2(&1, 0)+P9 1(1, &)= p� 1(1, 0)+P9 2(&1, &) � M>1

&{1 or {2, &=- (M+1)�(M&1) � &=- 3 for M=2

(2.5)

and for Fig. 1, add the (\x, \y) momenta. We recall � Li=� li=0 from
Lemma 1. For Lemma 2: X&=L1, 2+l3=X&&=L3, 4+l4=X0=L0+l1, 2

=0, with X&=X&& (momentum along y), it is sufficient to write the energy
relation as (1&&2)(X&+X&&)=� l i=0. It remains the momentum along
the x-axis: L1, 3+l1=l2+L2, 4 , verified with the 7 collision terms:

i=1, 2, 1i=c� (F2+i f3&F i f4), 13i =c(F0 f3+Fi f3&i&2F3&i f i )

14i =c(F0 f4+F5&i fi&2F2+i f3&i ), 0=b(F1F4&F2F3)

As Illustration, for the set (li ) we define #� (only in) and notice 1i #� l3 , l4

is eliminated in l3, 4=&� (13i+14i )=&l1, 2 giving only l1, 2, 3, 4=0.
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2.3. 13vi , Fig. 3. Models Without Spurious Invariants

First with a light particle at rest we write 4 collision terms f0F3& fiFi :

p� 0+P9 3(1, 2&)=p� 2(&1, &)+P9 1(2, &) � M=2, &=- 5, (Fig. 3a) (2.6a)

p� 0+P9 3(2, &)=p� 1(1, &&)+P9 1(1, 2&) � M=2, &=- 1�5 (2.6b)

p� 0+P9 3(1, 2&)=p� 1(2, &)+P9 2(&1, &) � M=2, &=- 8, (Fig. 3b) (2.7a)

p� 0+P9 3(2, &)=p� 1(1, 2&)+P9 1(1, &&) � M=2, &=- 1�8 (2.7b)

Then with a heavy particle at rest we write 4 other collision terms
F0 f3&Fi fi :

P9 0+ p� 3(1, 2&)=p� 2(&1, &)+P9 1(2, &) � &2=4�(3M&1) (2.8a)

P9 0+ p� 3(2, &)=p� 1(1, &&)+P9 1(1, 2&) � &2=(3M&1)�4 (2.8b)

P9 0+ p� 3(1, 2&)=p� 1(2, &)+P9 2(&1, &) � &2=(3M+1)�(3M&1) (2.9a)

P9 0+ p� 3(2, &)=p� 1(1, 2&)+P9 1(1, &&) � &2=(3M&1)�(3M+1) (2.9b)

Adding 9 new momenta with (\x, \y) we get eight 13vi models that, for
brevity, we call (2.qa, b) models with q=6, 7, 8, 9. Those with f0 have only
M=2 while those with F0 have M>1. Notice the symmetries: (i) & � 1�&
for (2.qa) � (2.qb). For the locations of p� i , P9 i they look like ``models with
a rotation by ?�2,'' except for the changes x=\1 � y=\1�&, y=\& � x
=�1. (ii) Forgetting the values for & there are also symmetries for the
vectors p� i # P9 i between the f0 and F0 models. For instance (2.7a)�(2.8a),
(2.7b)�(2.8b) . . .

Fig. 3. (a) 13vi model with f0 light rest-particle, M=2 and &=- 5. (b) 13vi model with f0

light rest-particle, M=2 and &=- 8.
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From Lemma 1 we still have � Li=� li=0 (no spurious invariant for
the set with f0 or F0). For the 13vi models (Figs. 3), as for the case of the
11vi models (Figs. 2a-b-d), the momenta are in two intervals parallel to the
x-axis (the y-axis) with opposite values, y=\& (x=\1) and, as we shall
prove, without spurious invariant for the set without f0 or F0 . We call X\&

and Y\1 the sums of the left-hand side of the evolution equations referring
to these intervals. We call Z the sum of the evolution equations for the
densities in the external layer of the model, for instance Z=� Li=0 in
Fig. 3a and Z=L3, 4, 7, 8+l1, 2, 3, 4 in Fig. 3b. However, concerning the
general results without explicit collisions (Lemma 2), here they are in four
intervals (three for 11vi ) and without the rest particle. So we consider only
the energy relation.

Lemma 4. For the evolution equations of the external layer we get
Z=0 and either Y1, &1=0 in (2.qa) or X&, &&=0 in (2.qb) models.

We give the proof for two (2.qa) models. In Fig. 3a we get (4+&2) Z�M
+(1+&2) Y1, &1=0, Z=0 and in Fig. 3b (1+&2) � Li �M+(4+&2) Z=0,
� Li=0=Y1, &1 . In (2.8a) we have Y1, &1=� li=0 and Z=� l i=0 in
(2.9a). For the (2.qb) models the change is that due to the ``rotation by ?�2,''
then Y1, &1=0 becomes X&, &&=0.

With Lemmas 1�4 we have three linear relations and 5 physical
invariants (adding the two momentum relations). For the mass of the
species without f0 or F0 , like in the 9v, 11v models, we have the geometrical
structure of momenta parallel to the two axes with opposite values. For the
(2q.qa, b) models we have 15 collisions, however only 7 are sufficient for the
proof.

Lemma 5. No spurious invariants for the (Li ) sets of Figs. 3a�b
with f0 .

It is sufficient that all Fi 's be linked in the loss and gain terms of par-
ticular collisions with the only possible linear combination � Li=0. For
the 4 collisions with exchange of energy we have 4 couples with Li, j=0.
There exist 2 pairs of Fk , F l having collisions with sums of momenta along
the x axis. For these collisions we deduce two triplets with Li, j, k=0.
Finally there exist collisions 1 with sum of momenta along y where in the
loss and gain terms we have only particles of the first and second triplets.

As Illustration we begin with the (2.6a), Fig. 3a model:

11=c( f0 F3& f2 F1), 12=c� ( f3F1& f1F5), 13=c( f0F7& f4F5)

14=c( f0 F4& f1 F2), 15=c� ( f3F2& f1F6), 16=c( f0F8& f3F6)
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With 1=c~ ( f2F3& f1F4) we get L1, 3, 5, 7=&1, L2, 4, 6, 8=1 and � Li=0.
As an application we consider the model (2.9a) with F0 . Although the
numerical values for & are different we have the formal symmetry with the
Lemma 5 (2.6a) model: p� i # P9 i and collisions with Fi # fi and there is no
spurious mass relation for the light species (li ). We go on with the (2.7a),
Fig. 3b model:

11=c( f0 F3& f1 F2), 12=c� ( f3F2& f1F6), 13=c( f0F7& f3F6)

14=c( f0 F4& f2 F1), 15=c� ( f3F1& f1F5), 14=c( f0F8& f4F5)

With 1=c~ (F2F3&F1F4) we get L2, 3, 6, 7=&21, L1, 4, 5, 3=21 and
� Li=0. Comparing the present model (2.7a) with the model (2.8a) for F0 ,
we still have the formal symmetry p� i # P9 i and we deduce only � li=0 for
the (li ).

3. SYMMETRIC qvi " q̂vi , q=9, 11, 13, MODELS (FIG. 4)

To the previous qvi models (tips of the momenta parallel to the x and
y axes) with (x, y) momenta we add, with a rotation of ?�2, new models
q̂vi (q=9, 11, 13) with momenta components ( y, x). As we shall see,
contrary to the momentum conservations, there is no spurious invariant for
the mass conservations of the light and heavy species. We have two cases:

(i) either &{1{2, & not rational and only the particle at rest is
common to the two models qvi & q̂vi giving qvi _ q̂vi=(2q&1) vi=17vi ,
21vi , 25vi .

(ii) &=1 or 2 where we have in common 11vi & 11@v i the particle at

rest and four other, 11vi _ 11@vi=(22&5) v i=17v i . In this case, contrary to
(i) there is no spurious momentum invariant.

Let us define, for the qvi , q̂vi models, the three classes of collisions
Colqvi

, Col q̂vi
with only f i , F i # qvi , and f� i , F� i # q̂vi , respectively, and

Colqvi+q̂vi
the collisions mixing the particles of the two models qvi and q̂vi .

3.1. Mass Conservation

Lemma 1 is still valid with � li=� Li=0 without spurious invariants
for the species with a particle at rest.

Lemma 6. The mass species without rest particle has no spurious
invariant.
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Fig. 4. (a) Symmetric 17vi=(11+11&5) vi model with f0 light rest-particle, M=2 and
&=1. (b) Symmetric 17vi=(11+11&5) vi model with F0 heavy rest-particle, M=5 and &=1.
(c) Symmetric 17vi=(11+11&5) vi model with F0 heavy rest-particle, M=2 and &=2. (d)
Symmetric 17vi=(9+9&1) vi model with F0 heavy rest-particle, & not rational and spurious
momentum conservations. (e) Symmetric 17vi=(11+11&5) vi model with f0 light rest-par-
ticle, M=3 and &=1.

All the particles of the qvi model, with momenta (x, y), are associated
with other particles with opposite momenta (&x, &y). For the q̂vi models,
similar pairs with ( y, x) and (&y, &x) and the same energy. In Colqvi+q̂vi

we have such collisions where in the loss and gain terms we have pairs of
particles belonging either to the qvi or to the q̂vi models (all particles of
qvi , q̂vi belong to such pairs). For the subset of collisions with all the pairs
of qvi particles for the species without a particle at rest, the corresponding
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Fig. 4. (Continued )

collision terms vanish only if they include the associated pairs of q̂vi of the
same species. Let us start with F0 and consider 7=� li for all fi # qvi . Then
7=0 for either Colqvi

or Col q̂vi
. For the above Colqvi+q̂vi

collisions, 7=0
only if we add f� i # q̂vi which are all associated to these collisions. Finally for
the mass, 7=0 only if it includes all ( fi , f� i ) # qvi _ q̂vi and so without
spurious invariant.

3.2. Momentum Conservation

We recall a well known result. Let Col&FkFl&FmFp (or Fk fl&
Fm fp , or fk fl& fm fp). A necessary condition for a collision (xk , yk)+
(xl , yl) W (xm , ym)+(xp , yp) to exist is that the contribution for the
momentum along the x-axis ( y-axis) vanishes. Consequently for DVMs the
momentum conservations are satisfied when all particles are considered.
The problem is whether they can be satisfied in two subsets. We will find
a virus for such spurious invariants. Due to the symmetry of the model, it
is sufficient to study the x-axis momentum relation. For instance let us
define Jqv... , Jq̂vi

, Jqvi _ q̂vi
the momentum relation along the x-axis for respec-

tively the qvi , q̂vi , qvi _ q̂vi models.
For the symmetric models, we will find Jqvi

=0, {0, Jq̂vi
=0, {0

depending on whether only one or five particles are in common.

3.2.1. Only One Common Particle at Rest: {1, {2, Not Rational

Lemma 7. For & not rational, Jqvi _ q̂vi
#Jqvi

+Jq̂vi
#0 with the three

quantities being zero. A spurious momentum invariant exists.

We have verified these properties for the symmetric 17vi , 21vi , 25vi

models with q=9, 11, 13 (respectively 17, 25, 31 collisions). For a general
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proof we recall that the collisions for the composed model are the sum of
the collisions Colqvi

, Col q̂vi
and new ones Colqvi+q̂vi

connecting the two
models. Let us define ( fi , F i ) # qvi and ( f� i , F� i ) # q̂vi . It is sufficient to verify
that these new collisions vanish in the momentum relations of the two
components.

First in such collisions we cannot have pairs fi , F� j or f� i , Fj in the loss
and gain terms. Let us consider a sum of momenta associated to the two
models with q=9, 11, 13. For the x-coordinate we have s1+s2& with si=
either 0, \1, \2 and & not rational. For a collision with another pair of
the same type we have s3+s4&. The equality requires sj=sj+2 and the two
pairs are identical.

Second we consider pairs belonging to either qvi or q̂vi . For instance
pairs fi Fj and f� kF� l or Fi Fj and F� ksF� l or f i f j and f� k f� l . Along the x-axis we
must have the equality (s1+s2 , (s3+s4) &)#(&(s5+s6), s7+s8), which is
possible only if sj+sj+1=0, j=1, 3, 5, 7. Such pairs give zero for the sum
of momenta which means, for the qvi , q̂vi , only heavy or light particles
with opposite momenta. Such collisions give, to the momentum conserva-
tions, a zero contribution to both Jqvi

, Jq̂vi
, and Jqvi _ q̂vi

. We have four inde-
pendent linear relations for the two momentum relations. Adding the two
mass relations for the heavy and light species, there is at least one spurious
invariant.

As illustration of Lemma 7, we write down the relations for the
17vi=9vi _ 9� vi model, Fig. 4d. From the 6 collisions Col9vi

(without 0) for
the Fi , fi , written in (2.9), we deduce the 6 collisions for Col9� vi

with
Fi+4 :=F� i , fi+4 :=f� i . For Col9vi+9� vi

, we get 5 collisions with pairs of
opposite momenta:

01=b(F1F4+F2 F3+F� 1 F� 4&3F� 2F� 3)

02=b(F2F3+F� 1 F� 4+F� 2 F� 3&3F1F4)

03=b(F� 1F� 4+F� 2 F3+F1 F4&3F2F3)

&:
3

1

0i=b(F� 2F� 3+F1F4+F2F3&3F� 1 F� 4) (3.1)

41=d( f1 f2& f� 1 f� 2), 42=d� ( f3 f4& f� 3 f� 4)

J9vi
=L1, 2&L3, 4+l1&l2=0, J9� vi

=&[L� 3, 4&L� 1, 2+l� 4&l� 3]=0

J17vi
#J9vi

+J9� vi
=0
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Col9vi
and Col9� vi

give zero for both J9vi
, J9� vi

. For Col9vi+9� vi
with opposite

momenta, Fi F j , fi fj ... give J9vi
=J9� vi

=0. We have two momentum conser-
vations along the x-axis and two other (x # y symmetry of the model)
along the y-axis. This symmetric 17vi model has one spurious invariant.

3.2.2. Five Common Momenta (&=1, 2) and 17v i=11v i _ 11@v i

Models

To our two previous 17vi physical models:(3) M=2, &=1, 2 Figs. 4a�c
we add two new ones: M=5, 3, &=1 Figs. 4b�e. For these four symmetric
models we have the 5 physical conservation equations. For collisions like
those in Lemma 7, with pairs of opposite momenta belonging to one of the
two models, we still have J11vi

=J@11vi
=0. We consider collisions with

exchange of energy and, we remark, with only one of the common
momenta. We deduce J11vi

{0, J@11vi
{0. The main point is that now the

momentum relations are not the sum of the corresponding ones for the two
models because an additional relation arises from the four common nonzero
momenta.

Lemma 8. For qvi _ q̂vi models (any q value) with f0 , F0 and other
fi (or Fi ) common, we have Jqvi

{0, Jq̂vi
{0 and no spurious momentum

relation.

For the densities Fi , f i # 11vi and F� i , f� i # 11@vi , we first consider a colli-
sion with energy exchange with two of these common momenta (('1 x,
'2 x), '2

i =1 with the same energy). For F0 fi&Fk fj (or f0F i& fk Fj ) with
( fi , fj ) (or (F i , Fj )) common we cannot satisfy the energy conservation in
loss and gain terms. Second, for such collision, we consider only one of the
common densities fi # qvi & q̂vi for 1& f0 f i&Fk fl and another f� i in the
associated collision term (rotated by ?�2) 1� & f0 f� i&F� j f� l . In 1, with only
one of the common fi we deduce that only ( fi , Fk , fl , f� i ) # qvi and only
( fi , F� j , f� l , f� i ) # q̂vi . Consequently the contributions of 1 and 1� to Jqvi

are
respectively zero and const.1� . Similarly these contributions to Jq̂vi

are
respectively const.1 and zero. We have similar results if, for f0 , the com-
mon momenta correspond to Fi or if starting with F0 , the common
momenta correspond to either fi or Fi . For qvi=11vi , we write the four
models and notice that J17vi

{J11vi
+J@11vi

:

&=1, M=2, Fig. 4a (37 collisions), fi , i=0, 1, 2, 3, 4 # 11vi & 11@vi ,

J17vi
=J11vi

+J@11vi
&l2, 4

1, 3=0, lm, n
i, j :=li, j&lm, n (3.2)
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&=2, M=2, Fig. 4c, (33 collisions), Fi , i=0, 1, 2, 3, 4 common,

J17vi
=J11vi

+J@11vi
&l2, 4

1, 3=0, Lm, n
i, j =L i+Lj&Lm&Ln (3.3)

&=1, M=5, Fig. 4b (37 collisions), F0 , fi , i=3, 4, 5, 6 common,

J17vi
=J11vi

+J@11vi
&l4, 6

3, 5=0 (3.4)

&=1, M=3, Fig. 4e, (33 collisions), f0 , Fi , i=1, 2, 5, 6 common,

J17vi
=J11vi

+J@11vi
+L1, 5

2, 6 (3.5)

Illustrations of Lemma 8 for q=11: (i) We begin with Eq. (3.2), f0 ,
F� i=Fi+6 , 1& f0F3& f1F1 and 1� & f0F� 3& f� 1F� 1 & f0F9& f2F7 . We write
the contribution of 1, 1� to the momentum relations along the x-axis:

J11vi
=2L4, 6

3, 5+L1&L2+l2, 4
1, 3=&1� {0, J@11vi

=L9, 10
11, 12+l2, 4

1, 3=1{0

(ii) We go on with the Eq. (3.4) model with F0 , F� i=F i+4 , 1&F0 f3

&F1 f2 , 1� &F0 f� 3&F� 1 f� 2&F0 f4&F5 f7 and write the contributions:

J11vi
=2L2, 4

1, 3+l1&l2+l4, 6
3, 5=1� {0, J@11vi

=L5, 6
7, 8+l4, 6

3, 5=&1{0

(iii) We consider the Eq. (3.3) model with F0 , f� i= fi+6 , 1&F0 f3&
F1 f2 , 1� &F0 f� 3&F� 1 f� 2 &F0 f9&F2 f8 giving the contributions:

J11vi
=2L2, 4

1, 3+l1&l2+l4, 6
3, 5=21� {0, J@11vi

=2L2, 4
1, 3+l9, 10

11, 12=21{0

(iv) We finish with the Eq. (3.5) model with f0 , 1& f0F3&F1 f1 ,
1� & f0F� 3&F� 1 f� 1 & f0F9&F2 f3 giving the contributions:

J11vi
=2L4, 8

3, 7+l1&l2+L2, 6
1, 5=&1� {0, J@11vi

=L9, 10
11, 12+L2, 6

1, 5=1{0

We verify with (3.2�3.5) that the contributions of 1, 1� to J17vi
are zero.

As illustration of Lemma 6, we verify that the mass of the species
without particle at rest (for brevity only for the (3.5)�(3.9) model with 33

collisions) does not lead to any spurious invariant. Only 11 collisions are
sufficient:

11& f0 F3& f1F1 , 12& f0F4& f2F2 , 13 & f0F7& f1 F5 ,

14& f0 F8& f2F6 , 15& f2F1& f1F2 , 1� 1 & f0F9& f3 F2 ,

1� 2& f0 F10& f4F6 , 1� 3& f0 F11& f3F1

1� 4& f0 F12& f4F5 , 1� 5&f4 F2& f3F6 , 1� 6 & f4F1& f3F5

983Planar Discrete Velocity Models for Gas Mixtures



We eliminate successively 11 , 15 , 12 , 1� 1 , 1� 3 , 1� 6 , 1� 5 , 1� 2 , 1� 3 , 1� 4 in L1, 3 ,
L1, 2, 3 , L1, 2, 3, 4 , L1, 2, 3.4, 9 , L1, 2, 3, 4, 9, 11 , L1, 2, 3, 4, 5, 9, 11 , L1, 2, 3, 4, 5, 6, 9, 11 ,
L1, 2, 3, 4, 5, 6, 9, 10, 11 , � L i&L12 , � Li&L8, 12 , and finally 14 in �12

1 Li=0.

4. ONE-DIMENSIONAL 7vi AND SYMMETRIC 13vi PLANAR
MODELS

4.1. qvi=7vi Model (Fig. 5) with Momenta Along the x-Axis

We start with the binary collision F0 f3& f2F1 valid for any value
M>1:

P9 0+ p� 3(M+1, 0)= p� 2(1&M, 0)+P9 1(2M, 0) � M�2 (4.1)

add p� i+ p� i+1=P9 j+P9 j+1=0, i=1, 3, j=1 with a new collision F0 f4&
F2 f1 . With 7 densities Fi , i=0, 1, 2, f i , i=1, 2, 3, 4 and only two collisions
this model (only 4 physical invariants for a one-dimensional model), has
necessarily one spurious invariant. We write the collisions and the spurious
invariant for the mass of the species without a particle at rest,

11=c(F0 f3&F1 f2), 12=c(F0 f4&F2 f1), � l2, 3=l1, 4=0 (4.2)

while the three other invariants are physical: mass for the heavy particles,
momentum along the x-axis and energy. The previous test for planar
models (tips of the momenta not parallel to the y axis) cannot be applied
for a model along x. However we also have missing collisions for the two
subsets of the light species. A medicine, with a modification of the
philosophy underlying the continuous Boltzmann equation, (5) is the inclu-
sion of multiple collisions:

4=a� ( f M+1
1 f M&1

4 & f M+1
2 f M&1

3 ), 2M4=l2, 3=&l1, 4 � only : li=0

(4.3)

4.2. 7vi " 7� vi=13vi Symmetric Planar Model (Fig. 5) with
M�2

This gives, for M=2, 5, the two 13vi models of ref. 1. We add the
q̂vi=7� vi model with momenta along the y-axis, letting f� j= fi+4 , F� j=F i+2 .

We begin with binary collisions and add 5 collisions, two with f� i , F� i in
1� i=1i+2 and three other from 0=b(F1F2&F3F4), 4i=a( f i fi+1&
fi+4 fi+5), i=1, 3. With 13 densities and 7 collisions we have at least one
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Fig. 5. M=3, 7vi and Symmetric 13vi=(7+7&1) vi model with F0 heavy rest-particle and
without spurious heavy mass conservations with ternary collisions.

spurious invariant. We find two spurious mass relations for the light
species:

41, 2=&l1, 4=&l2, 3=l5, 8=l6, 7 , l1, 4+l5, 8=l1, 4+l6, 7=l1, 4+l2, 3=0

(4.4)

We go on with multiple collisions, adding 4� =a� ( f M+1
5 f M&1

8 &
f M+1

6 f M&1
7 ):

41, 2=&l1, 4&2M4=&l2, 3+2M4=l5, 8+2M4� =l6, 7&2M4� (4.5)

Only the physical mass relation �8
1 li=0, for the light species, remains.

5. 15vi AND SYMMETRIC 15vi " 15@vi=25vi MODELS
(FIGS. 6 and 7)

The 25vi (M=2, 5) model is important. First, it was one of the two
explicit models presented in ref. 1. Second, some people, with powerful
computers found that it has spurious invariants and this negative result
was confirmed in ref. 5. Here we show that only for M=5 spurious
invariant exists (eliminated with multiple collisions) while the M=2
model, with binary collisions, has no spurious invariant. In fact the virus
for M=5 can be detected at the qvi=15vi level. Like previously for some
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Fig. 6. (a) 15vi model with F0 heavy rest-particle M=2 and without spurious invariant.
(b) 15vi model with F0 heavy rest-particle M=5 and with spurious invariant.

planar qvi models, we have (contrary to M=2) tips of the momenta not
parallel to the y-axis. These different features between M=2 and M=5 are
easily seen in the Figs. 6�7. We study the 15vi and briefly the 25vi models
while a complete proof is given in ref. 7.

5.1. Planar 15vi , M�2 Models (Fig. 6; M=2, 5)

First we start with two collisions with exchange of energy for all
M�2:

11=F0 f3& f2F1 , p� 3(M+1, 0)=p� 2(1&M, 0)+P9 1(2M, 0)
(5.1)

01=F0 F1&F3F5 , P9 1(2M, 0)=P9 3(M, M )+P9 5(M, &M )

Second, from (5.1), we deduce another collision with exchange of energy:

13=F0 f5&F3 f2 , p� 5(1, M )=P9 3(M, M )+ p� 2(1&M, 0) (5.2)

With ('1x, '2 y), '2
i =1 we obtain the qvi=15vi model: p� 6(&1, M ),

0= p� i+ p� i+1=P9 1+P9 i+1 , i=1, 3, 6, j=1, 4, P9 6+P9 3= p� 8+ p� 5=0.
Lemma 1 is still valid with only �6

0 Li=0. Geometrically we notice that
momenta along two intervals parallel to the y-axis with x=\1 exist only
for M=2. From the previous sections we expect for M{2 (binary colli-
sions) a spurious mass invariant (medicine with multiple collisions) for the
light species.
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Fig. 7. (a) Symmetric 25vi=(15+15&5) vi model with F0 heavy rest-particle, M=2 and
without spurious invariant. (b) Symmetric 25vi=(15+15&5) vi model with F0 heavy rest-
particle, M=5 and with spurious invariant.

Lemma 9. For the light mass species, there is no spurious invariant
for M=2 with binary collisions and M{2, integer, with multiple collisions.

For the collisions with exchange of energy we remark that fi , i=1, 2
and respectively f5&i , f7&i , f9&i are in the loss and gain terms and we
deduce two quadruplets: li, 5&i, 7&i, 9&i=0. In these two subsets we remark
that the momenta of f7&i , f9&i (only ones not along the x-axis) have the
same x but opposite y values. Consequently for the collisions with either
sums of momenta along the x-axis or opposite momenta, they are in loss
and gain terms and we still have li, 5&i, 7&i, 9&i=0. For the collisions with
sums of momenta along the y-axis (with the two quadruplets in loss and
gain terms), they are possible for M=2 (binary collisions and tips of
momenta parallel to the y-axis) or for M integer {2 (multiple colisions)
eliminating the spurious invariant.

As Illustration, we write 6 (among 16) binary collisions common to
M=2, {2 and add two other for M=2 and for M{2, integer (multiple).

11=F0 f4+F4 f8+F6 f6&3F2 f1 , 1� 2=F4 f8+F6 f6+F2 f1&3F0 f4

1� 4=F6 f6+F2 f1+F0 f4&3F4 f8
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12=F0 f3+F3 f7+F5 f5&3F1 f2 , 1� 3=F5 f5+F1 f2+F0 f3&3F3 f7

1� 5=F3 f7+F5 f5+F1 f2&3F0 f3 ,

41=f M&1
5 f2& f M&1

6 f1 , 42=f M&1
7 f2& f M&1

8 f1 (5.3)

1i , 1� i+1 , 1� i+3 disappear in l i, 5&i, 7&i, 9&i , i=1, 2 leading to: M41, 2=
l1, 4, 6, 8=&l2, 3, 5, 7 � only light mass �8

1 li=0. for 41{0, 42{0. For
M=2 (M{2), binary (multiple) collisions we only have the light mass
relation. If we restrict to binary collisions for M{2, then 41=42=0 and
we have one spurious mass invariant l2, 3, 5, 7=l1, 4, 6, 8=0.

5.2. Symmetric 15vi " 15@v i=25vi , M�2, Models
(Fig. 7; M=2, 5)

Adding the 15@vi model, we obtain the 25vi model (5 common particles)
for M�2. We have found 46 (42) binary collisions for M=2 (M{2) while
we could also add 4 multiple collisions for M{2. Lemmas 1�8 are still
valid for the mass of the heavy particles and the momentum relations
(without spurious invariants). Due to the symmetry of the model, it is suffi-
cient to prove that only 4 physical invariants exist for the x-dependent model.

Lemma 10. 10+1 binary collisions are sufficient to prove that
there is no spurious invariant for the 25vi , M=2 mass of the light species
� li=0.

i=1, 2, 41+i= f 2
4+i& f i f i+2 , 4� 2+i= f i f4+i& f9 f10+3i

1i =F0 f3+i+2F2+i f5+i&3F i f3&i
(5.4)

1� i=2F2+i f5+i+F i f3&i&3F0 f3+i

4� 1=f3 f4& f 2
11 , 4� 2= f1 f2& f 2

9 , 41= f2 f M&1
5 & f1 f M&1

6

First, l11=4� 1 , l13=4� 4 , l16=4� 3 , l9&l13, 16=4� 2 , l1, 9, 16&l13=12+
43, 1, 1 , l1, 9, 13, 16+2l6=&43&1� 2+2M41 . Second, l2, 9, 13&l16=11+42

&241 , &l2, 9, 13, 16&2l5=11+42+2M41 . Finally, 2M41=l1, 4, 5, 13, 16+
2l6=&[l2, 3, 9, 4, 13, 16+2l5] giving only the physical invariant: � li=
l1, 2, 3, 4+2l5, 6, 9, 13, 16=0 if 41{0. For M{2 and only binary collisions,
then 41=0 and we have a spurious mass invariant: 0=l1, 4, 5, 13, 16+2l6=
l2, 3, 9, 11, 13, 16+2l5 .

6. CONCLUDING REMARKS

In this paper we have discussed the construction of a class of planar
DVM for binary mixtures that, for binary collisions, we summarize.
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(i): As discussed in refs. 1�3 and suggested in the book by Monaco
and Preziosi(6) we start with collisions with exchange of energy between the
two species F0 f i&Fk fj or f0F i& fk f l . With the exchange of momenta
('1x, '2y), '2

i =1 we obtain semisymmetric qvi models (not symmetric in
the the exchange between the two axes). For the species with F0 (or f0) all
particles are linked to F0 (or f0) and we only have one physical mass con-
servation. However problems can arise for the mass conservation of the
other species or for other physical conservations, like momentum conserva-
tions. We notice that for the species without F0 (or f0) they are in both loss
and gain terms of these collisions. We retain only two new types of colli-
sions (ii) (or (iii)). We have collisions with sums of momenta along the
x-axis (or y-axis) coming from two momenta with opposite y (or x) values.

Finally adding the ( y, x) momenta we find the symmetric qvi _ q̂vi

models.

(1) We begin with the qvi (q=7, 9, 11, 13, 15) models and discuss the
possibility of a spurious mass invariant for the species without F0 (or f0):

7vi with F0 , 4 f i and only 2 collisions of the (i) type (without
common fi ), we necessarily have two doublets li, j=0 and one spurious
invariant.

9vi with F0 , 4 f i , 4 (i) collisions (common f i ) without spurious
invariants.

11vi with F0 (or f0) and 6 fi (or Fi ): With 4 collisions of the (i) type
and only two fi (or Fi ) common we have two triplets li, j, k=0 (or
Li, j, k=0). Adding the (ii) collisions does not change this because the two
fi (or Fi ) are in the loss and gain terms. If the qvi momenta are parallel to
the y axis with opposite x values (or not) we can (cannot) add collisions
of the (iii) type and the two triplets give (do not give) the quadruplet
li, j, k, l=0 without (with) spurious invariant.

13vi with 8 fi (or Fi ) and 4 collisions of the (i) type, without common
particle, we get 4 doublets li, j=0 (or Li, j ). For the (2.qa, b) models,
q=6, 7, 8, 9 the tips of the momenta are either parallel to the x or y axes
with opposite values and the (ii), (iii) lead first to two triplets li, j, k=0 (or
Li, j, k=0) and finally to the physical invariant � li=0 (or � Li=0).

15vi with F0 , 8 f i and 8 collisions of the (i) type with common f i ,
leading to two quadruplets li, j, k, l=0. With M=2 (M{2) we have (do not
have) momenta parallel to the y-axis, we can (cannot) add collisions of the
(iii) type leading to models without (with) spurious invariant.

(2) We go on with the symmetric qvi _ q̂vi models. If qvi & q̂vi=1
({1), the momentum relation along the x-axis is (is not) the sum of the
associated momenta for the qvi , q̂vi and there is (is not) a spurious momentum
invariant. This eliminates the (9+9&1=17) vi and (13+13&1=25) vi
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models. There remain 5 physical models: 4 (11+11&5=17) vi models
(two of them presented in ref. 3) and only one (15+15&5=25) vi model,
with M=2, presented in ref. 1, mentioned in refs. 2�4 and studied here and
in ref. 7). For the other 25vi , M{2 models, there is not this drawback of
spurious momentum invariant but the virus of spurious mass invariant of
the starting 15vi model is transmitted automatically.

Concerning the fact that our minimal semisymmetric model is 9vi ,
while in ref. 4 it was our previous 11vi model (ref. 3), the explanation is in
our construction of models from a starting energy exchange collision. For
particles in the plane we find 4 associated momenta while there are only
two for particles along one axis. Such collision cannot exist if the three
particles are along the two axes, so the minimal model is with all particles
along the same axis leading to our 7vi model (spurious mass relation). The
next step is with one particle in the plane and the two other ones along the
axes (our 9vi model).

The fact that, with binary collisions we find no spurious relations for
the models with 25vi , M=2, which contradicts both the results of ref. 4
and those obtained with powerful computers, can be explained. If we con-
sider only the common M=2, 5 binary collisions (as was done in ref. 1),
ignoring the 4 crucial M=2 binary collisions, then we find that both
models have spurious relations. In our distinction between the two models,

the help was given by the two 15vi , M=2, 5 (25vi=15vi _ 15@vi ). We find
for the 15vi models, with M=5, the same drawback as for some 11vi

models with the tips of the momenta not parallel to the y-axis, leading to
a spurious relation.

We must be very careful for similar models with different M values.
Moreover we mention that our pedestrian method (eliminating suc-

cessively different collision terms), discarding the particle at rest, can be
extended to the three momentum and energy conservations. Any vanishing
linear combination, including light and heavy evolution equations, must be
a linear combination of these three invariants and the mass of the species
without particle at rest. We seek also the minimal number of collisions.
Such a study for the 25vi , M=2 and 5 models was done in ref. 7 with only
15 and 16 collisions.

(3) A crucial property of our semisymmetric qvi and symmetric
qvi _ q̂vi models is that all particles are linked to the particle at rest with
energy exchange collisions. Notice that, in order to avoid spurious
invariant, our criterion of tips of the momenta along parallels to the two
axes is sufficient only for the qvi models while for the symmetric ones,
another criterion (more than one common momenta) was necessary. In
ref. 3 we mention the existence of two physical 13vi semisymmetric models,

990 Cornille and Cercignani



intermediate between the 11vi and 17vi models. More generally let us define
a third class, semisymmetric models intermediate between the qvi and the
symmetric qvi _ q̂vi models where we rotate only some of the qvi momenta.
A great difference with the two previous classes is that all particles are not
linked to the particle at rest. Let us consider the 11vi , 17vi and 15vi , 25vi

models (tips of the momenta parallel to the two axes and 4 momenta along
the bisectors of the two axes). For the intermediate models we have not
found spurious mass invariant. What happens for the possible spurious
momentum invariant? There exist intermediate models with this spurious
invariant and some other, that we mention here, without. (i) We begin
starting with 11vi where we add two momenta (0, \1) (which are the
rotated by ?�2 momenta (\1, 0)) and get three physical 13vi models (2 in
ref. 3): First in the 17vi , M=5, Fig. 4b model, we retain only f7 , f8

(eliminate Fi , i=5,..., 8). Second for the M=2, Fig. 4a model, we retain
F7 , F8 (eliminate Fi , i=9,..., 12). Third for the M=3, Fig. 4e model, we
retain f3 , f4 (eliminate Fi , i=9,..., 12). (11) We go on starting with 15vi ,
M=2, Fig. 6a for intermediate models between 15vi , and 25vi , Fig. 7a.
First we add 2 momenta (0, \4), (see F7 , F8 in Fig. 7a) and get a
(15+2=17) vi model. Second we add 6 momenta (1, \1), (0, \1),
(&1, \1) (see f15 , f16 , f13 , f14 in Fig. 7a) and get a (15+6=21) vi model.
Third and fourth to this 21vi model, we add 2 momenta, either (0, \4)
(see F7 , F8 in Fig. 7a) or (0, \3) (see f11 , f12 in Fig. 7a) and get 2
(15+8=23) vi models.

The explicit results and proofs will be presented elsewhere.
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